• Top Innovations Boost Growth of Materials for 5G Infrastructure
    Growth opportunities driven by the need for low-loss, cost-effective materials in 5G infrastructure

    Click image to view it in full size

    In the last three years, activities related to the rollout of 5G networks have increased. Stakeholders in the 5G industry are actively trying to build 5G infrastructures to ensure uninterrupted connectivity. However, stakeholders face challenges related to transmission losses in 5G electronic components, such as 5G antennas, filters, circulators, cables, and wirings. This has resulted in the need for high-performance materials with low-loss properties. Materials with low dielectric constant, dissipation factor, and moisture absorption are being investigated as they can potentially address the challenges related to transmission losses. In addition, materials with thermal stability needed to resist the circuit boards production conditions and thermal conductivity to distribute the heat generated during operations at high frequencies are also in demand.

    Among 5G components, 5G antennas are considered as one of critical components driven by rise of consumer electronics and the changes in 5G infrastructure toward decentralization, which requires massive construction of base stations that contain large number of antennas.

    Materials such as liquid crystal polymers, polyimides, fluoropolymers, or low temperature co-fired ceramics are currently used for 5G antennas. However, their limitations, such as high dielectric constant and high prices, are driving R&D efforts to develop new high-performing and cost-effective materials. Emerging material alternatives such as glass or polymeric resins, including polyphenylene ether and polyphenylene sulfide resins are being investigated for use in 5G networks due to their promising dielectric and thermal performance.


    Take your first step towards achieving growth-centric solutions with our Growth Pipeline Dialog™. Speak to our industry experts in a complimentary open discussion that will spark innovative thinking and growth opportunities that will benefit your organization.

    Access Research Via